Ch4. Le noyau de l'atome Seconde

# Chapitre 4 LE NOYAU DE L'ATOME

### Objectifs du chapitre

### Connaître et comprendre les notions de :

- Numéro atomique, nombre de masse, écriture conventionnelle :  ${}^{A}_{Z}X$  ou  ${}^{A}_{Z}X$ .
- Élément chimique.
- Masse et charge électrique d'un électron, d'un proton et d'un neutron, charge électrique élémentaire, neutralité de l'atome.

#### Savoir:

- Citer l'ordre de grandeur de la valeur de la taille d'un atome.
- Comparer la taille et la masse d'un atome et de son noyau.
- Établir l'écriture conventionnelle d'un noyau à partir de sa composition et inversement.

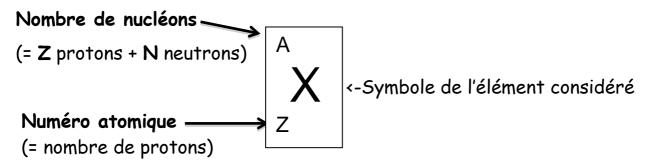
### I. Modèle de l'atome

#### A/Introduction:

- "C'est Pas Sorcier" : Voyage au cœur de la matière (6min) : <a href="https://www.youtube.com/watch?v=hxMNJ6-8n5c">https://www.youtube.com/watch?v=hxMNJ6-8n5c</a>
- Évolution du modèle atomique de l'antiquité à nos jours : <a href="https://www.youtube.com/watch?v=97MQoUNqMuk">https://www.youtube.com/watch?v=97MQoUNqMuk</a>

#### Activité 1 : Structure de l'atome

## B/Caractéristiques des constituants de l'atome


| Particules constituant l'atome                 |             | Masse (kg)                | Charge électrique (C)             |  |
|------------------------------------------------|-------------|---------------------------|-----------------------------------|--|
| Nucléons (A) = particules constituant le noyau | Proton (Z)  | 1,673 x 10 <sup>-27</sup> | $+ e = + 1.6 \times 10^{-19} C$   |  |
|                                                | Neutron (N) | 1,675 x 10 <sup>-27</sup> | 0 C                               |  |
| Électron                                       |             | 9,1 x 10 <sup>-31</sup>   | - e = - 1,6 x 10 <sup>-19</sup> C |  |

<sup>&</sup>quot;e" est la charge élémentaire. e = 1,6.10<sup>-19</sup> C (Coulomb)

10/11/2023 ©PetiteProf&Co

## C/Ecriture conventionnelle (ou notation symbolique) du noyau

Le noyau atomique est représenté symboliquement par la notation :



Le nombre de neutrons : N = A - Z

### **Application:**

| Atome | Hydrogène | Oxygène | Carbone | Azote |
|-------|-----------|---------|---------|-------|
| Z     | 1         | 8       | 6       | 7     |
| Α     | 1         | 16      | 12      | 14    |

- À chaque "Z" correspond un <u>symbole</u> constitué d'une lettre MAJUSCULE, parfois suivie d'une lettre minuscule.
- Toutes les entités chimiques (atome, ions...) possédant le même numéro atomique Z appartiennent au même élément chimique.

## Noyaux isotopes:

Des <u>noyaux isotopes</u> possèdent le même nombre de protons,  $\mathbf{Z}$ , mais pas le même nombre de neutrons,  $\mathbf{N}$  (et donc pas le même nombre de nucléons,  $\mathbf{A}$ ).

## **Exemples**

L'hydrogène existe sous trois formes isotopiques différentes:

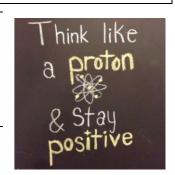
$$H(A=1;Z=1) H(A=2;Z=1) et H(A=3;Z=1)$$

Écris le symbole de ces noyaux sous la forme  ${}^{A}_{Z}X$ , précise la valeur de N dans chaque cas.

Quelle est l'écriture conventionnelle des isotopes de l'oxygène (Z=8), sachant que leur nombre de neutrons, N, varie de 8 à 10.

## II. Les caractéristiques de l'atome

#### A/Dimensions et électroneutralité de l'atome


• L'atome est électriquement neutre, mais le noyau est chargé positivement, car il contient des protons (chargés +e), tandis que le cortège électronique est constitué d'électrons chargés négativement (-e).

La charge du noyau Q<sub>noyau</sub> sera calculée de la façon suivante :

 $Q_{noyau} = Z \times e$ 

avec  $\mathbf{Q}_{noyau}$ : charge du noyau (en C),  $\mathbf{Z}$ : nombre de protons

et **e** : charge d'un proton (en C).



Application: Calculer la charge d'un noyau de Lithium.

<u>Données</u>: Ecriture conventionnelle du lithium: <sup>7</sup><sub>3</sub>Li.

Charge d'un proton :  $e = 1,6.10^{-19} C$ 

- Le rayon de l'atome est de l'ordre de 10<sup>-10</sup> m.
- Celui du noyau est 100 000 fois plus petit, soit un diamètre de l'ordre de  $10^{-15}$  m.

#### B/Masse de l'atome

La masse des électrons est négligeable devant celle des nucléons (= protons et neutrons).

On considèrera que la masse d'un atome  $m_{\text{atome}}$  est égale à celle du noyau. Cette masse sera calculée de la façon suivante :

 $m_{atome} = A \times m_{nucleon}$ 

avec  $m_{atome}$  : masse de l'atome (en kg), A : nombre de nucléons

et **m**<sub>nucleon</sub> : masse d'un nucléon (en kg)

Application: Calculer la masse d'un atome de Lithium.

<u>Données</u>: Ecriture conventionnelle du lithium: <sup>7</sup><sub>3</sub>Li.

Masse d'un nucléon,  $m_{nucleon} = 1,67.10^{-27} \text{kg}$ 

Exercices: Parcours débutant: QCM p79, n°5, 6, 7, 9, 10, 11 p80 et 17 p81

Parcours classique: n°7, 10, 11, 12 p80 et 15 et 18 p81

Parcours avancé: n°8, 12 p80 et 14, 15, 16, 19 p81

10/11/2023 ©PetiteProf&Co